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FOREWORD

Needle-punched nylon felts have proved to offer superior ballistic
resistance at low areal densities. Knowledge of the mechanism of felt
deformation during ballistic impact could eventually lead to improved
felts for armor application.

The work covered in this report was performed over a two-year period
by Mr. Thomas W. Ipson and Mr. Edward Wittrock of Denver Research
Institute, University of Denver, under Contract DA19-129-AMC -157(N) . The
theoretical approach led to an analytical model based upon momentum con-
siderations.

Experimental resulis were obtained by a spark gap technique as a
check on the analytical model. The model obtained analytically was
mainly accurate in predicting experimental results at the lower range
of impact velocities. One of the major gains from this work has been
the intimate knowledge of the felt reaction to impact at different
stations in the deformation cone.

The U. S. Army Natick Laboratories Project Officer was Mr. Roy C.
Laible and the Alternate Project Officer was Mr. Anthony L. Alesi.

3. J. KENNEDY
Director

Clothing & Organic Materials Division
APPROVED:

DALE H. SIELING, Ph.D.
Scientific Director
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Colonel, QMC
Commanding
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Velocity

Coordinant

NOMENCIATURE

initial impact velocity of the projectile at time zero (fps)
projectile velocity at any time, t (fps)

residual velocity of the projectile after complete perfora-
tion (fps)

transverse velocity of the felt material at a radius, r, and

at any time, t (fps)
radial longitudinal tensile wave velocity of the material (fps)

radial velocity of the felt material that is imparted by the
action of the longitudinal wave (fps)

radial transverse wave velocity relative to the stationary
felt material (fps) ’

radial transverse wave Velocity; relative to the r coordinate,
= Ct - u (fps)

System

r P~

radius measured from the axis of the projectile (inches
and feet)

transverse (axial) direction measured from the rear
surface of the felt material (inches and feet)

Mass, Density, and Force

projectile mass (slugs)
mass density of felt material (1b - secz/ft4)

total force opposing projectile motion (lbs)

time after initial contact of projectile and felt material
(seconds) B

Dimensions

R -

Ar

radius of 0.22 cal. Fragment Simulating Projectile (. 0183 {t)

distance between axis of the impacting projectile and the
center arc-gap station (inches) '

thickness of the felt material (inches)
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ABSTRACT

&Vhe’n organic fiber felt materials are impacted by blunt frag-
ments, stress waves propagating laterally into the material transfer
projectile momentum fto an increasing (roughly conical) ¥olume of felt
material. [1—_337 applying a retarding force to the projectile, stresses in
the felts can be maintained below rupture values, provided that the
felts are free to move in the direction of the projectilé] The objective
of this program was to define the transient behavior of the felt and the
force interaction between it and the projectile.

E&Ln experimental technique was developed whereby the position-
 time histories of eleven points (spark gaps) on the rear surface of a
felt sample could be determineca The center spark station, being on
the projectile trajectory, provides projectile displacement-time data.
Other stations provide both radial and transverse displacements. The
longitudinal radial wave gives material particles an initial radial
velocity inward; later, the slower moving transverse wave imparts a
.transverse velocity to the felt, usually stopping or reversing radial
motion. Measurement errors average less than two percent.

@ix felt samples (nylon (3), orlon, dacron, polypropylene) were
tested using the 17-grain fragment simulating projectile at various
velocities up to and greater than the ballistic limit velocityﬂ Graphical
differentiation was used to obtain velocity-time, force-time, and
force-distance relationships. CQualitative evaluations ré‘\veal that
strength, elongation, and transverse wave velocity are the three pre-
dominant parameters in determining effectiveness.] The energy ab-
sorbed by a felt is maximum at the ballistic limit velocity and decreases
dramatically at higher (complete perforation) velocities. An analytical
model based upon momentum considerations is compared to the experi-
mental results.

xii




RESPONSE OF NON-WOVEN SYNTHETIC FIBER
TEXTILES TO BALLISTIC IMPACT

I. INTRODUCTION

Considerable interest has been generated in the possible utiliza-
tion of inorganic fiber felts as materials for body armor. In the range
of lower areal densities, these materials exhibit favorable resistance to
ballistic perforationby fragment type projectiles. Previous investiga-

. 12 2.,
tions o

have been primarily of an empirical nature and have been
directed toward establishing relationships between ballistic limit velocity
and the various geometric and material parameters involved. These
investigations have produced valuable information concerning the quan-
titative effect of such parameters upon the ballistic limit velocity.
Consideration has been given to the phyéical properties of various fiber
materials (tenacity, elongation at rupture, etc.), fiber length, denier,

crimp, thickness, and variations in the needling process.

The objective of this research program was to more precisely
define the transient process which occurs during the response of felt
material to an impacting projectile and to analyze the force interaction
between the felt and the projectile. Before felt materials can be de-
‘signed to provide maximum ballistic protection, appropriate analytical
models must be developed which will reveal influential parameters.and
the nature of their involvement in the penetration process. Precise,
experimental data is required, not only to verify hypothetical models,
but to provide the observational insight required for model develop-
ment. The experimental approach taken was to accurately determine
the position-time history of the projectile and of several points on the
rear surface of felt samples during ballistic penetration. Such data
provide; the means for evaluating the prediction capability of a pro-
posed model with a degree of precision exactly defined by the accuracy
of the position-time data. While subject to the degeneration of accuracy
associated with the graphical differentiation of experimental data, the
data are also useful in revealing the characteristics of velocity-time,
force-time, and force-distance relationships.

v The development of analytical models logically proceeds
through an iterative process during which hypothetical models are
first proposed (based on observation) and then evaluated to determine
their ability to predict position-time data. Subsequent refinements of

% Superscripts refer to the Biblxiography, Section VI.




promiéing models are made until the required degrees of fundamental
understanding and prediction precision are achieved.

Attempts to develop analytical models starting with the general
theoretical equations associated with ballistic penetration often fail.
The primary reason for this is that constituative relationships required
to solve the equations are not available. Thus, the theorist must make
assumptions or otherwise be faced with an auxiliary experimental pro-
gram to determine constituative relationships. Such auxiliary experi-
mental programs ma’ bear little resemblance to the actual problem he
is trying to solve and may lead him away from the central theme.
Furthermore, such experiments do not furnish him with the means for
verifying the validity of his model. Consequently, unless the state-of-
the art is sufficiently well developed to sustain an approach based |
entirely on theory, it is more rewarding to recognize the importance
of experiment for developing analytical models, as well as for verifying
them, and to proceed accordingly. Pursued to its conclusion, the
approach utilized during this pi‘ogram should ultimately result in a
completely rational basis for the development of design criteria for
felt materials to be utilized in ballistic protection applications.

A basic re(iuirement of body armor is flexibility; immobility
very quickly nullifies the advantages of ballistic protection. Felt
materials and woven t,g:xtilégvs meet related requirements since they
exhibit very little resistance to bending or shearing deformations. As
armoring materials, felts may be classified as non-rigid, ductile
arrmmors. As such, their behavior during impact departs radically from
that of rigid materials such as the conventional metallic armors.

Rigid armors respond to impacting blunt fragments primarily by devel-
oping inertial forces and highly localized shearing resistance. Figure
1 depicts the process which occurs during perforation.of a rigid plate
by a hard blunt fragment. This perforation process may be thought of
in terms of a two-step concept, the first step being the inelastic colli-
sion of two masses, the fragment (mp) and the plate plug (mg). The
second step involves shearing the plug from the plate. An analytical
model based on this two-step process was successfully used to derive
analytical expressions which accurately predict the post-perforation
dynamics associated with hard blunt fragments and rigid plates. ¥4 qf
the plate defeats the fragment, displacements are small in compari-
son to the plate thickness. The time period during which the fragment
is decelerated is extremely short. A projectile is stopped when the

Work,g Fdx (retarding force through stopping distance) is equal to its

2
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initial kinetic energy or, in other terms, when an irnpulse,/ Fdt,

equal and opposite to its initial momentum is applied. Since extremely
small quantities of time and displacement are characteristic of rigid
plate impact, very large resistive forces must be developed so that
the energy and momentum of the projectile can be absorbed. High
strength, ductile, rigid materials such as steel can withstand very
large stresses and thereby ¢an develop significant ballistic resistance.

As previously stated, the behavior of felt materials during
impact is quite different than that characteristic of rigid materials.
The major difference is associated with the amount of displacement
which occurs during the impact process. Figure 2 illustrates this
gross deformation. It is an enlarged photograph of the rear side of a
panel of nylon fiber felt, 0.40-inch thick, being impacted by a .22 cal.,
17-grain, Watertown Arsenal Laboratories developed fragment
simulating projectile (spec1f1cat10ns are given in the Appendix). This
photograph was taken with a one-microsecond duration light source at
2.3‘0 microseconds after initial impact. The displacement along the

‘line of flight is approximately three times the panel thickness. Also,
as may be seen, the deformation is not localized to the area of impact
but has spread out into the material. Felt materials fail at stress
levels many magnitudes below those at which conventional armor mate-
rials fail. Although felts can support onl‘j_..r'elatively small forces,
they develop ballistic resistance by applying these forces to the projec-
tile over relatively large dlstances and through relatively long periods _
of time. '

~ For clarity, discussions of the experlmental program and the
analytical 1nvest1gat1ons have been separated even though the respec-
tive efforts were performed concurrently ' The- Append1xes contain
complete descriptions of the prOJectlle and the six. felts utilized during
the experimental program {Table A-I).  All va11d p051t10n time data
are recorded in Table B-I and all residual veloc1t
in Table C-I, in the Appendixes. :

ata are presented




Figure 2.

Response of Non-Woven Nylon Felt during Ballistic Impact.

230 Microseconds after Impact by 17-Grain Fragment
Simulator. Initial Velocity - 650 feet per second. Felt - 43
ounces per square yard.



1L, EXPERIMENTAL PROGRAM

The experimental program was directed toward obtaining a
precise quantitative description of the behavior of felt materials during
the impact process. The general behavior of a felt panel at a stage
during impact is illustrated in Figure 3. The impacting projectile has
accelerated felt material in the transverse direction. This transverse
motion of the felt material has been propagated radially outward by
means of a transverse wave, w. Ahead of the transverse wave is a
longitudinal tensile wave, C, propagating radially outward in the plane
of the felt. This wave produces a radial velocity, u, directed inwardly
toward the point of impact. To describe this behavior and the growth
of the deformation profile depicted in Figure 3, it is necessary to
obtain data concerning the transverse and radial motion of the felt mate-
rial as a function time after initial contact of the projectile with the
felt. Knowledge of the displacement of the felt materialas a function
of time and radius provides information related to strains, velocities,
dispersion, etc. Wave propagation characteristics essential to the
development and evaluation of analytical models are revealed by the
position-time data, Since the motion of the felt matevial at zero radius
can be assumed to be the same as that of the projectile (after initial
compression of the materialj, data concerning this point will provide
information about the motion of the projectile as it is decelerated. The
velocity and deceleration history of the projectile are obtained by
graphical differentiation of the displacement-time curve. The decelera-
tion curve is used to obtain the total retarding force being developed by
the felt.

A Experimental Technique

To obtain the desired data, a unique technique was developed
to measure the displacement of the felt during the impact event. This
method consisted of defining and recording the position of various
stations (spark gaps) on the rear surface of the felt panel at predeter-
mined times during the impact. By defining the position-time function
of these stations {initially located at various radial distances from the
point of impact), the transient deformation of the material can be
studied. Each station is represented by a small spark gap cut in a
short segment of a fine wire. This wire is securely attached to the
rear surface of the felt panel at each station; a loop is left in the unse-
cured wire between stations so that the motion of the felt at one station
does not influence the motion of another by means of the interconnecting

wire. Figure 4 is a photograph of the wire attached to a test panel of
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Figure 3.

)

Illustration of the Wave and Material Behavior which Occurs
during Ballistic Impact of Non-Rigid Felts




Figure 4. Attachment of Spark Gap Wire to Rear Surface of Nylon
Felt Sample
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felt., During the impact process, the position of each station and, thus,
the position of the rear surface of the felt at this point, was defined by
means of an intense arc created at each gap in the wire by a high
frequency-high voltage pulse which was applied to the wire during the
impact. These experiments were conducted in a dark room and the
position of the stations (arcs) were recorded by an open shutter camera
aimed perpendicular to the line of fire and focused on the profile of the
felt panel.

The experimental technique is illustrated in Figure 5. All tests
were conducted with a 17-grain fragment simulating projectile (T-37).
These fragments were fired from a .22 cal. Hornet rifle and the impact
velocity was controlled by varying the amount of propellant used. This
impact velocity was measured by make switches which triggered a
chronograph to determine the time of travel over the known distance
separating the switches. The felt specimens were securely held in a
rigid frame having a 4-inch diameter circular opening. This opening
is sufficient in size to insure that no wave reflections will return from
the frame tc affect the behavior of the felt during the time of interest.
At the point of impact, another make switch was attached to the front
side of the felt panel. As the projectile contracted the felt, this switch
provided a signal used to trigger the electrical pulses which were fed
to the arc-gap wire attached to the rear surface of the felt. The elec-
trical pulses consisted of 10, 000-volt surges of 2-microsecond duration
which occurred at a frequency of 11,600 cycles per second (86 micro-
seconds between voltage spikes). The number of voltage pulses could
be controlled and a pre-determined number was dialed into the equip-
ment prior to firing. The first pulse occurred as the projectile en-
countered the felt and shorted the trigger switch; successive pulses
occurred at intervals of 86 microseconds thereafter for the desired
number of pulses (usually six to eight). The timing, and number of
pulses, were checked by photographing the oscillographic display of
the signal. As each voltage pulse occurred, an intense arc was created
simultaneously at each of the arc-gaps thus providing a\pinpoint of light
which defined the location of each station every 86 microseconds during
the impact event. This sequence was recorded on film by the open.
shutter camera. This record of the dots made by the electrical arcs
shows the intermittent position of each station on the felt profile as it is
deforming with time. Figure 6 is an example of the photographic record
of the test data. The center horizontal series of dots represents the
arc-gap station coincident with the projectile trajectory. This series
shows the displacement-time history of the felt material immediately




ILLUSTRATION OF EXPERIMENTAL TECHNIQUE USED TO STUDY THE BEHAVIOR OF FELT MATERIALS
DURING THE IMPAGT PROCESS

.22 Cal RIFLE

|- FELT MATERIAL

FINE WIRE SEWN TO FELT
[ AT 30in. INTERVALS

TEST CONDUCTED IN DARKROOM

| ARG-GAPS CUT IN WIRE AT EACH
POINT OF ATTAGRMENT

| SPARKS PRODUGED SIMULTANEQUSLY
AT EACH GAP DURING VOLTAGE PULSATION

HIGH FREQUENCY - HIGH VOLTAGE
PULSE GENERATOR

SPEED GRAPHIC CAMERA
WITH POLAROID BACK

PHOTOGRAPHIG REGORD
OF POINT DISPLAGEMENT
RISTORY

Figure 5. Schematic of the Spark-Gap Technique Used to Obtain

Displacement-Time Data Regarding the Response of Felt
Material to Impact
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Figure 6. Enlarged (3X) Photograph of Typical Spark Display Showing
Position-Time Relationship during the Impact Event for

Eleven Stations on Rear Surface of Felt Material




in front of the projectile and, therefore, the displacement-time history
of the projectile during the impact. The other series of dots show the
displacement history of the felt at various radial distances from the
point of impact. Figure 7 is a graphic reproduction of Figure 6. Dashed
lines have been included to illustrate the deformation profile develop-
ment and the path taken by each station. Note the radially inward
‘movement of stations prior to the transverse movement. This is due

to the inward radial velocity, u, that is imparted to the felt after the
arrival of the longitudinal tensile wave, as depicted on Figure 3. The
progress of the transverse wave is observed by noting the time interval
during which transverse motion occurred at each radial station. The
data illustrated by Figures 6 and 7 can be used to determine numerous
relationships. These include transverse and longitudinal wave veloci-
ties, projectile kinematics, material motion as a function of time and
radius, and the gross radial strain developed in the felt during the im-
pact deformation. During the experimental program, a test series was
conducted involving four different felt fiber materials selected to repre-
sent a wide variety of fiber characteristics.

B, Nature of the Required Data

Prior to planning the experimental program and developing the
spark~gap technique, investigations were made to ascertain the type
and nature of the experimental data required for this research. Studies
were initiated and pertinent literature was reviewed concerning the
ballistic impact of non-rigid materials to establish the general charac-
teristics of the dynamic response of such materials (previously depicted
in Figure 3). Initial deformation of the material results in a geometry
roughly conical in nature, the position of the apex being controlled by
the projectile movement and the diameter of the base by the progress
of the stress waves. Stresses being applied to the felt material have a
component in the transverse direction {perpendicular to the plane of
the felt and in the direction of projectile motion) and a component in
the radial direction (in the plane of the felt and directed inward toward
the point of impact). These two components propagate with different
velocities; the radial stress is propagated by means of a longitudinal
tensile wave and the transverse stress (analogous to a shear stress) is
propagated by means of a slower transverse wave. Material located at
a given initial radius, ro, from the point of impact is not affected by
the impact of the projectile until the arrival at this point of the tensile
wave, after which the material will have a radial velocity, u, toward
the point of impact., The material continues to move toward the center
until the transverse wave has propagated out to it (at a radius defined
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as r in subsequent discussions) and imparts a transverse velocity to
the material. Major displacement of the material is in the transverse
direction, the direction of projectile motion. (Note that the transverse
momentum of the material represents the total change in momentum of
the projectile at any time.) The development of this deformation 1is
controlled by the projectile motion and the stress wave action.

Numerous photographs of various stages of the impact phenom-
ena (similar to that shown in Figure 2) were taken. These were used to
determine the amount and rate of the displacements and the range of the
material and stress wave velocities to be experimentally investigated.
 From this information, it was determined that the period during which
the major projectile deceleration occurs is of the order of 500 micro-
seconds and that the total displacements are large. The experimental
technique and apparatus were designed accordingly. The frequency of
the electrical equipment {11,600 cps) allows data measurement at 86
microsecond intervals during the impact event; six to eight sets of data
points define the position-time history. The displacements are of such
magnitude that they can be defined accurately by this method.

C. Data Analysis Procedure

The experimental data establish the position of points on the
rear surface of the felt at successive instants of time during the impact
event. Referring to Figure 7 as an example, these data define the posi-
tion of eleven radial stations at seven times during the impact. The
initial positions of the stations are recorded at a time coinciding with
the initial encounter of the projectile with the front surface of the felt.
Positions of the stations are recorded at 86 microsecond intervals;
thereafter, until the final voltage pulse occurs at 516 microseconds.
The stations or arc-gaps are designated numerically as shown on
Figure 7. The arrows point to the position of these stations at zero
time, the time of initial impact. No movement of the felt has occurred
at this time and these points represent the original position of the
radial stations with regard to the undisturbed felt. The center series
of seven dots (station 0} represents the movement of the rear surface
of the felt along a trajectory coinciding with that of the projectile. In
this test, seven voltage pulses programmed into the electronic equip-
ment occurred in proper sequence as confirmed by the oscillograph
record of the voltage signal: Prior to firing, the distance separating
the two end arc-gaps {stations -5 and +5, Figure 7) was accurately
measured to obtain a reference dimension. The film negative is en-
larged by means of projection techniques and measurements of the
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displacements of the stations are made. The reference distance be-
tween end stations provides the required correlation between displace-
ments measured from the enlarged image of the data film and true
displacements. The displacement data for the other radial stations are
somewhat more complicated than that for station 0 since both radial
and transverse displacements occur, Radial motion at these stations is
initiated by the radial longitudinal wave after a sufficient time has
elapsed for wave propagation, transverse motion is initiated later when
the transverse wave arrives, Consider station number +3, Figure 7,
which was located prior to impact at a radius of 1. 82 inches from the
center station. It is observed that only six points are recorded for
this station on the film. Since seven voltage pulses are definitely
known to have been applied to the arc-gap wire and, consequently,
seven arcs occurred at each arc-gap, the presence of only six points
at station +3 implies the existence of two superimposed points. Thus,
the point representing the original location of the station also repre-
sents the position of this station at the time of the second voltage pulse
{86 microseconds after initial impact). The longitudinal wave had not
propagated out to this radius during the first time interval. The third
data point {the second dot in the series for station +3} is radially dis-
placed. Thus, the longifudinal tensile wave arrived at this station
during the time interval between the second and third voltage pulse.
The fourth data point (third dot) also shows radial displacement due to
the radial material velocity, u, created by the tensile stress being
propagated by the longitudinal wave. The fifth point (fourth dot) shows
displacement in the transverse direction; therefore, the transverse
wave met the inward moving station +3 between the fourth and fifth
voltage pulse i(between 344 and 430 microseconds). The sixth and
seventh data points show continued transverse and radial displacement.

Projectile motion is determined using the center gap (station 0)
which lies on the projectile trajectory. While this point actually lies
on the rear surface of the material, the motion of this point closely
corresponds to the motion of the projectile after initial compression of
the material at the point of impact. Displacement-time data obtained
from Test No. 40-C are plotted on Figure 8§ {experimental test data is
compiled 1n Table B-1 in the Appendix}. 1t should be remembered that
this is the displacement of the station 0 arc-gap; consequently, the
projectile displacement-time curve would be displaced downward by an
amount representing the compressed thickness of the material. The
projectile impact with the front surface represents zero time and station
0 on the rear surface does not move until the compressive wave is trans-
mitted through the material. During this short period of time it will be
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shown that the change in projectile velocity of station 0 is negligible as
compared to the accuracy of the velocity measurement. This observa-
tion provides the condition that the displacement-time curve of this
station must intersect the abscissa with a slope corresponding to the
projectile impact velocity, Vgo. A smooth curve is fitted to the data
points such that it intersects the time axis with this slope. At 900 feet
per second impact velocity, the interface impact pressure is only about
1500 psi, a small elastic stress in the projectile; elastic stress waves
move through the projectile at about 18,000 feet per second. Conse-
quently, the projectile behavior is accurately defined as that of a rigid
body. Due to the grossly inelastic behavior of the felt it will be essen-
tially compressed by the time that station 0 begins to move. Subsequent
changes in thickness will be very small compared to measured dis-
placements.and will have very little effect on the position of data points.
Impact impedance mismatch and the characteristic inelastic response
of the felt material completely nullifies any compressive stress wave
effects related to the primary impact. Consequently, it can be posi-
tively concluded that the displacement-time curve will be a continuous
(smooth) function. Since some positive force-time function will be
continually applied to the projectile, the slope of the displacement-
time curve must continually decrease (there can be no reversals in
slope). Thus, a smooth curve, meeting these conditions, is drawn to
correspond as closely as possible to the data points; deviations between
the data points and the curve are attributed to experimental variations.

The velocity-time curve shown on Figure 9 was obtained by
graphical differentiation of the displacement-time curve, Figure 8.
The displacement-time curve actually represents the motion of station
0; however, as explained above, it is valid to use this curve to obtain
projectile velocity since (after initial compression of the felt) these
velocities are identical. The initial rate of change of velocity is due
to the impact interface pressure which is governed by impact imped-
ance. The value of the interface pressure in this case is about 1500
psi (a force of about 60 pounds on the projectile) resulting in a change
of velocity of approximately 20 feet per second during the first 25
microseconds. As the impacted felt material is displaced in the direc-
tion of projectile motion, relative motion occurs between this material
and that material laterally adjacent. This relative motion creates two
radial stress waves which propagate into the material inducing both
radial and transverse motion to an increasing volume of the felt mate-
rial. Resulting stresses increase the decelerating force acting on the
projectile, causing a more rapid decrease in velocity {the region be-
tween 50 and 150 microseconds on Figure 9). As the projectile velocity
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‘decreases, transverse particle velocities in the material at any radius
decrease {(asdo the related stresses;. In addition, the ratio of projec-
tile velocity to wave velocity decreases, changing the angular relation-
ship between the moving felt and the projectile axis; this reduces the
tensile stress component applied to the projectile. This compound ef-
fect produces the drastic reduction in deceleration indicated above 200
microseconds in Figures 9 and 10.

Graphical differentiation of the velocity-time curve results in
values for acceleration which can be used to develop the force-time
relationship shown on Figure 10. This curve more clearly illustrates
the effects discussed in the previous paragraph, a major portion of the
retarding impulse being applied between 25 and 200 microseconds.

Figures 8 and 10 can be uscd to develop the relationship between
force and displacement shown on Figure 11. This curve shows that the
felt must be free to move at least 1.5 inches in order to absorb the
major portion of the projectile s kinetic energy.

As 1llustrated above, the displacement-time data obtained at
station 0 are used to determine the motion of the projectile as well as
the motion of the material at that station. Due to symmetry, these
motions have no radial components. At other stations. both radial and
transverse displacements are observed as shown on Figure 7. Table
B-1 in the Appendix presents all valid data concerning the r (radial) and
z {transverse) components of stations as functions of time obtained
during the test program. Typically, the inward radial displacements
due to the action of the longitudinal radial wave are relatively small and,
to a large extent, are more than oifset by outward radial displacements
due to the subsequent action of the transverse radial wave. In contrast,
the transverse displacements due to the action of the transverse wave
are much larger. For these reasons, major attention 1s given to
transverse motions of the felt material. Transverse displacement of
the vawious radial stations can be analyzed in the same manner as that
used to study transverse iaxiali motion of the center station. This
~provides a means of describing the transverse motion behavior of the

felt material as a function of time and radius.

It is important to remember that the transverse momentum of
the felt material represents the total momentum transferred from the
projectile at any time. Consequently., equations of motion derived
from momentum considerations will involve only the transverse motion

of the material. Motion equations derired from energy considerations
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will involve both transverse and radial motions; however, since radial
kinetic energies are small compared to transverse kinetic energies, it
may be reasonable to ignore radial motion of the material in energy

equations as well.

Transverse displacements of the material at stations 0, -1, -2,
-3, and -4, Test 40-C, are plotted on Figure 12. The curve drawn
through the data points for station O is that previously presented on
Figure 8. Radius, rq, indicates the position of these stations at time
= 0. Radius, r, indicates the position of these stations at the time of
arrival of the transverse wave. The difference, ro - r, represents
radial displacement due to the action of the longitudinal radial wave
prior to arrival of the transverse radial wave. Graphical differentia-
tion of the curves shown on Figure 12 results in the velocity-time
curves presented on Figure 13. Initial velocity of station 0 is obtained
directly by measuring projectile velocity. (The curve for this station
is :reproduced from Figure 9.) Until the transverse wave reaches a
station, the transverse velocity is zero. Upon arrival of this wave,
the maximum transverse velocity is almost instantaneously achieved;
its magnitude is determined by measuring the slope of the displacement-
time curve at the intercept with the time axis. Velocity at each station
subsequently decays. The maximum transverse velocity imparted to
the material also rapidly decays with radius. Velocities are directly
related to stresses. The decrease in velocity with both time and radius
indicated on Figure 13 reveals the nature of the transverse wave. The
decrease in maximum transverse velocity with radius reflects the
decay of the intensity of the transverse wave due to dispersion. The
decrease in velocity with time at any station illustrates the wave shape
which is a function of projectile motion and material behavior.

The displacement-time data also provides information from
which longitudinal and transverse wave velocity, C and w, can be
deduced. Radial displacement of any station will be initiated upon
arrival of the longitudinal radial wave. While time of arrival is not
measured directly, the time interval (86 microseconds) during which it
arrives is provided by the time-displacement data. The bars on Figure
14 represent the time intervals associated with longitudinal wave arriv-
al at each station located at some displacement, ro. Initiated at the
radius of the projectile (0. 11 inch), the wave will propagate outward
starting about 30 microseconds after initial impact of the projectile
with the front surface of the material at time = 0. Using this point,
and assuming a constant longitudinal wave velocity, the straight line
shown indicates the position of the wave front with time. Note that the
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data fix the position of this line within rather narrow limits. The slope
of this line corresponds to the longitudinal wave velocity, C, assumed
constant (about 650 feet per second).

Displacement-time data for test 40-C were used to develop time
contours similar to those shown on Figure 7. From these, the radius
representing the position of the transverse wave front can be deter-
mined at these specific points in time. These points are shown as
circles on Figure 14. Triangular data points represent information
obtained from Figure 12. The slope of the curve indicates absolute
transverse wave velocity, w, the wave velocity with respect to the
material is greater by an amount equal to the radial particle velocity
(i.e., w+u). Values of w obtained by measuring the slope of the curve
approach 300 feet per second, initially, decaying rapidly to an appar-
ently constant velocity of 195 feet per second.

D. Accuracy of Experimental Data

Errors which can arise in the displacement-time data are
related to {1} the transfer of the reference dimension from the experi-
ment to the position-time plot {such as Figure 7}, and (2) the measure-
ment of individual displacements on the plot. Inherent errors related
to the transfer of the reference dimension have been defermined to be
less than two percent. (Errors are related to spark gap dimensions
and spark images on the photograph.) Maximum error in the measure-
ment of individual relative displacements is equal to the maximum
actual spark radius of 0,016 iach. Table 1 shows the total combined
maximum errors as a function of the actual magnitude of the measured
displacement. The actual value of displacement will fall within the
range established by the measured value plus or minus the indicated
error. It should be noted that these errors are maximum, excluding
human errors in reading and recording. They are related to an ex-
tremely high confidence level; average error values are much lower.
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TABLE I

MAXIMUM MEASUREMENT ERRORS
IN DISPLACEMENT -TIME DATA

Displacement . Maximum Error
Inches Inches Percent
0.01 0.014 140
0.10 0.018 18
1.00 0.036 3.6
10. 00 0,22 _ 2.2

Figure 8, on which displacement data depicting projectiles
motion are plotted. illustrates the typical range of displacement
measurements. This range lies between 0.5 inch and 1.75 inches.

Again, emphasizing that the errors given in Table I are maxi-
mum, and considering the range within which measurements are being
made, average errors in the displacement data obtained by the spark-
gap technique are of a few {1 to 2) percent., The high precision of this
displacement data provides an accurate means for establishing the
validity of displacement-time relationships predicted by analytical
models. Kquations of motion derived from the models can be inte-
grated, either exactly by mathematical means or precisely by numeri-
cal means, to yield such relationships. Thus, the displacement-time
data obtained during the experimental program provide an invaluable
data bank for establishing the validity of model predictions within a 1
to 2 percent accuracy range.

The displacement-time data have been used to develop velocity
and force functions such as those discussed in connection with Figures
9, 10, 11, and 13. This development has involved the careful fitting of
curves to the displacement data and subsequent, single and double,
graphical differentiation. If a continuum of displacement-time data
points were available, the fitting of a curve and its subsequent graphi-
cal differentiation would result in velocity values that would reflect,
directly, the original accuracy of the displacement data. While the
experimental data are very accurate at specific values of displacement
and time, exact knowledge of values within the regions between data
points is not available. Therefore, errors are introduced as a result
of the interpretation of the data. Great care has been exercised in use
of the graphical differentiation technique. The most critical step is in
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fitting the curve to the displacement-time data, graphical differentiation
of this curve introduces only small errors which result from the mechan-
ical measurement of slopes. It is impossible to calculate values for the
accuracy of resulting velocity and force relationships. However, the
degree of observed consistency in the graphical results obtained from a
large number of individual experiments indicates that these relationships
are valid for describing the characteristics of ballistic interaction.

The method which is used to determine the longitudinal tensile
wave velocity, C, involves 86 microsecond time periods rather than
precise time of arrival values. Therefore, the resulting values for C
are nominal values. The determination of the transverse wave velocity,
w, is more precise, involving the fitting of transverse deformation pro-
file contours to the position-time data provided by the photograph of the
spark-gap display. The accuracy of transverse wave velocity measure-
ments is of the same order of magnitude as the accuracies related to

projectile and material velocity measurements.
E. Presentation of Experimental Results

During the experimental program, tests were conducted in-
volving four felt materials {polypropylene, dacron, orlon, nylon} and
three areal densities (nominally, 40 ounces per square yard for each of
the four materials and 53 and 19 ounces per square yard for nylonj.
The properties of these felt materials are described in Table A-1 in
the Appendix. The test projectile was the 17-grain fragment simulator
{T-37), also described in Table A-1. A test series for each material
was conducted in which the impact velocity of the projectile was varied
from approximately 400 feet per second up to a value near the ballistic
limit. All tests were conducted at zero degrees obliquity. A complete
tabulation of all valid displacement-time data gathered during this re-
search effort is given in Table B-1 of the Appendix. In addition to the
displacement-time data obtained by the spark-gap technique, residual
velocity tests (velocity after complete perforation) were conducted for
five of the six felt materials. The 19 ounce per square yard nylon felt
was not available at the time these tests were performed. The com-
plete results of the residual velocity tests are presented in Table C-1
in the Appendix,

In section C, Data Analysis Procedure, the method was ex-
plained by which the experimental displacement-time data for the
center station is used to develop velocity-time, force-time, and
force-distance relationships. This information pertains to the behavior

28




of the projectile during the impact event from the time of initial contact
with the felt material until major deceleration has been accomplished.
This data greatly aids in the definition of the response to impact of felt
materials since the projectile behavior is a direct result of the material
behavior. Typical results obtained for these relationships are pre-
sented on Figures 15 through 32. For each material, curves are pre-
sented for (1) projectile velocity as a function of time after initial
impact, (2) total retardation force developed by the felt material as a
function of time after initial impact, and (3) this same force as a func-
tion of distance traveled. It is important to note that the force-distance
relationship does not include the preliminary force-distance increment
associated with initial compression of the felt in front of the projectile;
this pressure and its relatively small magnitude were discussed pre-
viously in section C, Data Analysis Procedure. This increment can be
estimated by including the known calculated constant impact force (at
time = 0} for an initial distance equal to approximately two-thirds the
thickness of the felt (estimated from post-impact observations}. This
increment is of little consequence and has not been included in the
curves since it represents behavior prior to development of the radial
transverse deformation of the felt material which is the predominant
behavior.

Measured values for the longitudinal and transverse wave velo-
cities, C and w, are listed in Table II. The longitudinal wave velocities
. were obtained by assuming constant slopes for the displacement-time
relationships; transverse wave velocities represent the constant slope
portion of displacement-time curves {see Figure 14},

Figures 33 through 36 are presented to illustrate the ability of
the displacement-time data to provide information which defines the be-
havior of the felt material during impact. These curves show the
transverse velocity of the felt material at several radii as a function of
time after initial impact. Tests for relatively high and low impact
velocities are presented for polypropylene and nylon. These four
figures are typical and illustrate the significant characteristics of
material behavior.

The results for three of the five test series involving the mea-
surement of velocity after complete perforation are presented as
Figures 37, 38, and 39. These plots allow comparisons to be made
between polypropylene and nylon felts of the same areal density and
between nylon felts of two different areal densities. The data plotted
on these curves are the residual velocity, V., of the fragment
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TABLE II

LONGITUDINAL AND TRANSVERSE WAVE VELOCITY DATA

Impact Longitudinal Transverse
Material and Velocity Wave Velocity Wave Velocity
Areal Density | Test No. Vo - Ips C - fps w - fps

24-C 555 690 290
Polypropylene || ) ¢ 665 695 275
40 oz. /yd’ 25-C 820 670 290
44-C 390 480 240
Dacron 43-C 465 595 255
42 oz. /yd® 49-C 555 690 295
42-C 710 800 240
58-C 545 585 280
Orlon 60-C 620 - 250
43 oz. /yd® 59-C 700 750 270
62-C 780 605 270
39-C 405 545 180
Nylon 38-C 510 860 185
43 oz. /yd® 36-C 630 580 155
40-C 900 645 195
7-C 400 415 145
Nylon 15-C 640 485 200
53 oz. /yd’ 12-C 730 485 190
19-C 837 500 200
65-C 465 680 225
Nylon 2 68-C 545 545 210
19 0z. /yd 66-C 630 - 255
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simulator measured after complete penetration as a function of impact
velocity, Vo. The straight line through the origin represents the con-
dition for no energy loss; i.e., Vy = V5. The continuous smooth curve
is fitted to the data and shows that the residual velocity rises rapidly
after the minimum perforation velocity is exceeded (maximum impact
velocity that results in zero residual velocity) and quickly approaches
the initial velocity. The dashed curve represents a plot of the residual
velocity equation shown on the figures: numerical values within the
radical are experimental values for the minimum perforation velocity.
This equation is the result of assuming that the energy lost by the pro-
jectile during perforation is a constant value and equal to the kinetic
energy of the projectile traveling at the minimum perforation velocity. 3
The fact that the experimental curve rises more rapidly than the '"con-
stant energy loss' curve shows that the projectile energy loss during
complete perforation of felt materials decreases sharply with increas-
ing velocity. This dramatic decrease in energy transfer to the felt
material with increasing velocity is readily explained by noting that,

as perforating velocity rises, the ratio of projectile velocity to wave
propagation velocity also rises so as to limit the amount of material
available for sustaining the required strain; consequently, much less
strain energy is involved in the failure of the material. Values for
minimum perforation velocities determined for the five materials are
listed in Table III.

TABLE 111

MINIMUM PERFORATION VELOCITIES

Polypropylene Orlon Dacron Nylon Nylon
40 oz/yd* 43 oz/yd® 42 oz/yd* 43 oz/yd’ 53 oz/yd®
850 ips 800 fps 710 fps 900 Ips 1,000 fps

These values of minimum perforation velocity can be consid-
- ered as representative of protection ballistic limit velocities since an
impact velocity only slightly above the minimum perforation velocity
will result in a residual velocity capable of perforating the thin alumi-

num witness sheet,
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111, CONCLUSIONS BASED UPON EXPERIMENTS
A, Displacement-Time Experimental Technique

I, The spark-gap technique which was developed and utilized
for position-time measurements incorporates the unique capability of
accurately determining both the radial, r, and transverse, z, displace-
ments of numerous points on the rear surface of a felt material sub-
jected to ballistic impact, at precise instants of time.

2. Displacement-time data generated during the test program
represents a valuable and extensive source of precise information which
can be used to examine the prediction capability of analytical models.
Average error is typically less than_two percent, depending upon the
magnitude of the displacement measurement. ‘

3. Displacement-time relationships can be differentiated to
obtain velocity time relationships pertaining to the motion of the projec-
tile and the felt material. Projectile velocity relationships can be dif-
ferentiated to obtain the force interaction between the projectile and
the felt {i.e., force-time and force-distance}. Graphical differentia-
tion introduces inaccuracies: consequently, the velocity relationships
are much less accurate than the displacement relationships, and the
force relationships are more descriptive than definitive. Due to these
inaccuracies, the prediction capability of analytical models should
always be evaluated using the displacement-time data. However, the
observational definition of dynamic behavior represented by the time-~
derivatives provides valuable insight useful in the development of

models,
B. Residual Velocity Experimental Technique

The nature of steel projectile-felt material impact is such
that projectile deformation energies are inconsequential, Residual
velocity measurements provide a direct means for determining mo- '
mentum and energy transfer to the felt during complete perforation by
the projectile.

C. Characteristic Interaction Behavior
Lo During the ballistic interaction between the projectile and
the felt, momentum isg transferred to the material by transverse

stresses which produce particle velocities in the direction of projectile
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motion. These rotational stresses give rise to two waves which move
radially outward from the projectile axis. The longitudinal wave prop-
agates radial tensile stresses and strains and imparts inward radial
velocity to material particles. The transverse wave, propagating more
slowly, induces transverse stresses, strains, and particle velocities;
the transverse wave also changes the radial particle velocity, usually
reversing the radial direction of particle motion. Wave velocity deter-
mines the amount of material involved in the absorption of momentum
and energy at any time. At any projectile position, the unit strains in
the material depend upon the amount of material involved. Consequently,
higher wave velocities produce lower unit strains. Thus, it would
appear that high wave velocities would be desirable; however, wave
velocity is associated with the slope of the stress-strain relationship
and a material exhibiting a high wave velocity would also experience
higher stresses at a given value of unit strain. To defeat a projectile
these stresses must not exceed the failure stress. The transverse
momentum of the felt at any time is equal to the total change in momen-
tum of the projectile and analytical models based upon momentum con-
siderations will incorporate only transverse velocities. Energy
considerations should also include radial components of velocity as
well as the strain energy in the material; however, net radial velocities
are usually quite small and probably can be neglected.

2. The initial negative slope of velocity-time curves reflects
the interface pressure associated with primary impact. As the trans-
verse stresses develop, the negative slope increases to a maximum.
During the early portion of the ballistic interaction, the projectile
possesses a high velocity. As the ratio of projectile velocity to stress
wave velocity in the material drops, the unit strains decrease (for
reasons explained in the previous paragraph) resulting in a reduction
in stress. The conical half-angle which describes material deformation
geometry is also a function of this ratio and increases as velocity de-
creases; this reduces the stress component acting to oppose projectile
motion. Combined, these effects drastically reduce the retardingforce
acting upon the projectile and, subsequently, deceleration proceeds at
a much lower rate. These general velocity-time characteristics were

observed in every experiment.

3. The force interaction relationships obtained by graphical
differentiation of the velocity curves indicate that peak forces occur
somewhat later than might be expected. Peak forces would be antici-
pated shortly after the initial compression of the felt if the dynamic
stress-strain relationships for these materials had a constant or
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decreasing slope with strain; however, the initial slope of stress-
strain relationships for felt is very low, increasing with strain until
the failure strain is approached. Consequently, significant strains
must exist before stresses in the material (and resulting force on the
projectile) become maximum. In addition, impact compression waves
will impart a component of transverse velocity to particles at radii
somewhat larger than projectile radius which would introduce a delay
time into the development of the maximum force. During the develop-
ment of analytical models of the ballistic interaction, interaction force
is often represented by a function which increases in magnitude with
velocity. Functions which include a dependence upon displacement as
well as velocity may have to be incorporated to properly define the
early time behavior of the felt material.

4, The force interaction relationships expressed in terms of
force and distance show that the projectile travels through significant
distances (typically 1.0 to 1.5 inches at the higher impact velocities)
before the major portion of the kinetic energy of the projectile has
been absorbed. The material must be allowed to freely deform during
the ballistic interaction if the material is to perform effectively.

5. The velocity-time curves for several stations plotted on
the same graph define the felt material behavior at various radii from
the axis of impact. These curves show that the transverse particle
velocities (therefore, transverse stresses) being propagated by the
transverse wave, decrease with increasing radius. This radial dis-
persion is a consequence of the two-dimensional geometry involved.
However, these curves show that the rate of stress decay is highly
influenced by the severity of the impact. As the impact velocity in-
creases, the rate at which the transverse stresses decrease with radius
rises sharply. As noted previously, the unit strain in the material is a
function of the ratio of projectile velocity to wave propagation velocity.
Thus, the distribution of strain energy with radius in the material
rises dramatically at low values of radius and decays rapidly as a func-
tion of radius. This influence of impact velocity upon the rate at which
the stress levels (being propagated by the transverse wave) decrease
with radius, reflects the predominance of plastic behavior at the higher
velocities. Theories derived from analytical models based upon elastic
behavior will be seriously compromised at higher impact velocities.

59




6. The results of the residual velocity tests have shown that
the energy absorbed by the felt materials decreases rapidly once the
ballistic limit has been exceeded. The kinetic energy absorbed at the
ballistic limit velocity is the maximum that the material can absorb.
These results confirm conclusions previously drawn regarding the in-
fluence of wave velocities, and their effect, upon the amount of material
that is available to sustain strains. As the ratio of impact velocity to
wave velocity increases, unit strains and stresses increase; the volume
of material within which strain energies and kinetic energies are dis-
tributed (at any given projectile position) decreases. The residual
velocity data at impact velocities just above the ballistic limit shows
that significant energy is still being transferred before failure of the
material. Therefore, the material does respond to the impact situation
to some degree before failure occurs. Consequently, the ballistic limit
velocity is not directly equivalent, inconcept, to the critical trans-
verse particle velocity; i.e., that velocity at which instantaneous rup-
ture occurs because the strain related to this velocity equals the failure

strain.
D. Comparisons of Material Behavior

1. The velocity-time relationships which define the motion of
a projectile during ballistic interaction with each of the four felt mate-
rials are greatly affected by projectile velocity during the early stages
of the deceleration process. This velocity dependent behavior reflects
the influence of the high unit strains and stresses associated with high
values of the ratio of projectile velocity to wave velocity in the materi-
als. Du’ring this period, the plastic strain energy absorption rate is
very high, being highly sensitive to projectile velocity. Consequently,
the magnitude of the interaction impulse during this early time period
is a sensitive function of initial impact velocity. The velocity history
associated with the later stages of the deceleration process (after the
major impulsive interaction has taken place) is, in general, insensitive
to initial projectile velocity. The time associated with the major im-
pulse is typically of the order of 100 microseconds for polypropylene,
dacron, and orlon; for nylon, this time is characteristically 150 to 200
microseconds. The dynamic behavior of nylon is significantly different
as compared to the behavior of the other materials. Static load elonga-
tion tests reveal that nylon felt is the most ductile material, exhibiting
greater strain at a given value of stress. All of the felt materials ex-
hibit unusual load-elongation curves which increase in slope with strain
until the failure strain is approached. As expected, nylon propagates
transverse waves at the lowest velocity (see Table II}. The response
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of nylon during ballistic interaction results in lower peak values of
interaction force for any given impact velocity and the lowest rate of
force buildup. The low values of wave velocity in nylon result in
larger unit strains; however, its load-elongation properties prevent
stress levels from rising as rapidly as they would in the other mate-
rials. The resulting relatively low value of interaction force must be
applied for a longer period of time and through a greater distance to
decelerate the projectile; consequently, the time associated with the
major velocity dependent impulse is longer. The apparent disadvan-
tages of low wave velocity and low ultimate strength exhibited by nylon
felt are more than offset by its more ductile response at relatively low
values of stress. Consequently, nylon possesses a relatively high
ballistic limit capability. Polypropylene possesses about the same
ballistic limit capability as a result of its higher ultimate strength and
ability to propagate transverse waves at higher velocity. Thus, while
the ballistic limit capabilities of nylon and polypropylene are similar,
the manner in which they achieve this level of performance is not. The
responses of orlon and dacron are very similar to that of polypropylene;
however, their lower strengths result in inferior ballistic performance.

2. An important consideration in body armor applications is
the amount of displacement of the felt material that occurs during the
process of defeating the projectile. The force-distance relationships
can be used to determine the space which must be maintained between
the felt and the body. Ranking the four materials (40 ounce per square
yvard areal density) in order of increasing total deformation at the
ballistic limit velocity, results in the following order: dacron, orlon,
polypropylene, and nylon. However, dacron has the lowest ballistic
limit velocity; nylon the highest. Polypropylene is nearly equivalent
to dacron in terms of the distance required to stop the projectile and
possesses a ballistic limit almost equivalent to nylon. Consequently,
polypropylene is, in general, the best material for applications involv-
ing 40 ounce per square yard areal densities.

3. Three thicknesses of nylon felt were utilized during the
test program, having areal densities of 19, 43, and 53 ounces per
square yard. Ballistic limit velocities associated with these thick-~
nesses are 750 (approximate), 900, and 1000 feet per second, respec-
tively. To illustrate the superiority of the felt materials in this range
of areal densities, corresponding values of areal density for 2024-T3
aluminum are 230, 300, and 340 ounces per square yard and for
Hadfield steel are (unavailable), 170, and 180 ounces per square yard. 5
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The 43 and 53 ounce felts absorb almost identically the same specific
kinetic energy (energy per unit weight) at their respective ballistic

limit velocities. This ballistic energy absorbing superiority of felts
depends upon keeping the stresses below failure level during the ballis-
tic interaction process. Unit strains must be kept below failure strains.
In the three felts studied, the principal reason for failure at and above
the ballistic limit velocity is that the ratio of projectile velocity to wave
velocity produces strains which cannot be propagated by stresses below
failure level. This is dramatically illustrated by the residual velocity
tests, which show that the kinetic energy absorbed at velocities above
the ballistic limit velocity rapidly decreases to an insignificant propor-
tion of that absorbed at the ballistic limit. All of the felts studied

were thin enough to be able to freely respond; transverse momentum

is imparted to the material readily by the transverse stress waves.
Thicker materials are not free to respond (i.e., front 'layers' are
backed up by additional ''layers') to the transverse wave. Consequently,
failure stresses build up more rapidly causing the material to fail near
the projectile radius without imparting significant momentum to the
material. The combined effects of (1) the increased ratio of projectile
velocity to wave velocity, and (2) the prevention of free response of the
material to the transverse waves, drastically reduces the energy absorp-
tion capabilities of the felt materials. The ballistic advantages which
they exhibit at low areal densities quickly vanish as thickness increases.
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Iv. ANALYTICAL INVESTIGATIONS

Observational insight gained from the experimental program,
as well as the pertinent literature, suggests the characteristics which
an analytical model should incorporate. The ability of the felt mate-
rials to absorb projectile momentum and kinetic energy depends upon
the radial propagation of longitudinal and transverse stress waves
having magnitudes below the rupture stress of the material. The velo-
cities of the two radial waves, and the velocity history of the projectile,
establish the unit strain which must be sustained at any projectile posi-
tion. The dynamic strength and elongation characteristics of the felt
material establish its capability to sustain these strains without
rupture.

The pértinent three dimensional geometry with one axis of sym-
metry requires an analysis of waves diffusing within expanding cylindi‘i—
cal boundaries represented by the wave fronts. Wave analyses of this
sort are badly behaved even when materials are linearly elastic and
isotropic. ® Felts are notoriously inelastic and non-linear in response,
having stress-strain relationships which exhibit increasing slope with
strain until failure strains are approached. Current theoretical
developments fall far short of being able to cope with the one-
dimensional, non-linear, visco-plastic problem which would define the
strain-waves propagating in a ''bar' of felt material, to say nothing of
the three -dimensional (one symmetry) problem represented by the
projectile-felt interaction. Consequently, the only logical approach is
the development of analytical models based upon observation insight and
experimental verification, using displacement-time data and empirical
relationships such as those obtained during this effort.

A preliminary model based upon the appropriate momentum
equation was hypothesized as a first step in the development of an analy-
tical model relating material and geometrical parameters to observed
ballistic interaction behavior. The model yields the appropriate gen-
eral form of the velocity-time relationship and adequately describes
behavior at the lower-projectile velocities. At higher projectile velo-
cities, it predicts a velocity-time relationship which lies well above
the experimental curves, indicating its inability to reflect the non-
linear response of the felts. While the model falls far short of defining
the influence of pertinent parameters, it does illustrate approach and

provides additional insight valuable for further development.




Momentum Considerations

Consider the transverse ballistic impact of a felt material as
shown in Figure 40. A cylindrical steel projectile of mass (mp)
traveling along the z axis impacts the felt at time zero. Due to the
impulsive disturbance created by the impact, a transverse wave is
created which travels radially outward at the assumed constant velo-
city, C¢. The presence of the longitudinal wave which preceeds the
transverse wave is ignored. The radial material motion created by
the longitudinal wave is symmetrical about and normal to the z axis;
this radial motion does not contribute to transverse momentum. Let
V,y be the transverse velocity of the felt material at a radius, r, at
any time, t. The steel projectile is assumed to behave as a rigid body.

Let the mass of the felt directly beneath the projectile assume
the projectile velocity instantaneously; this mass is considered insig-
nificant in comparison to projectile mass. Therefore, the area defined
by 2mRT becomes the boundary at which the impulsive disturbance, due
to the projectile motion, is applied to the felt. This disturbance (a dis-
continuity in transverse velocity) will propagate {rom this boundary at
the velocity of the transverse wave. Writing the momentum balance

for any time, t;

mpVe = m Vv +-/Vzrdm. (1)

where, dm, is the mass of a differential element of felt material at a
radius, r, between the projectile radius, R, and the radius of the

transverse wave front, R + Ctt. The quantity, dm, can be written as:
dm = 2mpT rdr

and equation (1) hecomes:
R+ Ctt
mpVo = mpVp + ZﬂprVerdr (2)
R

If V. could be expressed in terms of Vp, T, and t, equation (2) could
be solved directly to obtain an equation of motion. An as sumption is

made as to the form of the projectile velocity-time relationship. The
form of this relationship is empirically formulated using experimental

velocity-time relationships.
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Figure 40. Transverse Impact of a Cylindrical Projectile and a Sheet
of Felt Material




_Kt%
Vo, = Vge (3)

This empirical function for the equation of motion of the projectile is
of little value unless the term K can be written as a function of the
material properties. To do this, assumptions are made which estab-
lish a relationship between Vy and Vzy.

The relationship between the projectile velocity and the mate-
rial velocity at any radius and time is established by the wave action.
If this were a one-dimensional problem, the velocity of the material at

a radius, r, and a time, t, would be equal to the projectile velocity at

T
an earlier time (t - E—) In the two-dimensional case, a simple rela-
£

tionship between the time and space variable does not exist. Also, the
effect of radial dispersion will reduce the magnitude of the transverse
wave. The effect of radial dispersion is assumed to be proportional to
the square root of the ratio of the radius at which the disturbance is
being applied, R, and the radius under consideration, r. An assump-
tion is also made as to the relationship between the time and space
variables associated with two-dimensional (cylindrical) wave propaga-
tions. If one-dimensional wave properties were assumed and the
radial dispersion factor included, equation (3) could be used to express
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K<t r—R)
[R T Gt
Var =nl = Voe : (4)

However, a more convenient equation, and one which more closely

Vg, as follows:

approximates two-dimensional wave phenomena, is obtained by re-

writing equation (4) as:

Y [r-R\7:
Vo :J—;R'Voe_K[t ( o ) ] (5)

or, expressed in terms of equation (3):

e

-R
E, )
Vor =al X vpe VT (6)

66



When r is equated to R, equation (6) produces the equation for the pro-
jectile velocity and, therefore, the correct equation of the material at
a radius R. At the radius of the wave front, R + Cit, the material velo-
city is the initial velocity, V,, reduced by the radial dispersion factor,
JE

.

Equation (5) can be substituted into the momentum equation,
equation (2), with the following results:

3
R + Cit r-R /2
K

R Ct
mpVO = mpr + vaT[\C Vpe rdr (7)
R

The solution of this equation will produce the desired value for the
term, K. This step is simplified with very slight effects upon the
results if R is considered insignificant in comparison to Cit. Making
this simplifying assumption and integrating equation (7) produces:

Y.
4/37p TR %, Kt '?
v, :———————pK Ct'*| Vpe -V, (8)

3
Kt/Z

From equation (3), the term Vpe is equal to V,. Equation (8)

becomes:

_ 4/3mp TR Ct3/2 [

VO - Vp mpK VO - Vp] (9)
Rearranging equation (9):
4/3mpT~R 3

K = / mp Cy /z (10)

Mp

Using this value of K, the equations of motion for the projectile and the
felt material become, respectively:

3
) 4/31;2TJE (Ctt)/z
Vp = Ve p (11)
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and:
3 3
_4/3mpTIR Ecm/‘z ] r/z]

R m
Vir :'\/; Voe P

In equations (11) and (12), C; is the transverse wave velocity. .

(12) ‘

However, in the derivation, the effect of the longitudinal wave has been

ignored: the transverse wave has been considered as moving in an un-

disturbed material. In the actual case, a longitudinal tension wave

precedes the transverse wave and creates a radial particle velocity, u,

toward the center. Therefore, the wave which transmits transverse

motion travels at an apparent velocity, w, which is equal to C¢ less u.

In terms of the fixed r coordinate system, the radius which bounds the

material possessing transverse motion, at any time, is equal to wt. .
But, since material has flowed into this area, the mass determined by ’?‘%‘
p, T, and the radius wt does not define the total amount of mass involved. 'I"".‘
The correct mass involved is defined by p, T, and the radius C¢t. Equa- ‘-'3:"3;“_ '
tions (11) and (12) do recognize the presence of the longitudinal wave if

the value of C; is the velocity of the transverse wave relative to the

fixed coordinate system. In order that equations (11) and (12) may be

compared to the experimental data, Ci is determined using the experi-

mental values of w and approximating u based upon experimental obser-

vation. As a first approximation, it can be stated that the value of u is,

in general, equal to 1/4 w or:

Ct =5/4w (13)
Substituting this value for C¢ into the equation of motion results in:

1. 86mpTA/R s
——— (wt)

Vi = Voe P (14)
and:
3 3
4B TR %5/4@) /o r/z:l
R m
V=N Ve p (15)

Equations (14) and (15) do a reasonable job of predicting the experimen-
tal results for impact velocities well below the ballistic limit velocities.
However, as the impact velocity approaches the ballistic limit velocity,

the discrepancy between the prediction of these equations and experiment
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increases sharply. This is a result of the fact that K was assumed
constant in order that it could be evaluated in terms of the material
parameters. The fact that K includes the transverse wave velocity
term, w, could reflect the impact velocity dependency of K. w is
observed to be higher duriﬁg the very early part of the impact, quickly
assuming a relatively constant value. Also, this analysis does not
attempt to do other than average the effects of the non-linear stress-
strain behavior of the felt materials.

While these equations of motion do predict results at low im-
pact velocities and indicate the possible role of density, thickness,
projectile mass, radius, and wave velocities, they fail at the extremely
important high range in velocity. Equations, valid near the ballistic
limit velocity, are required to establish the relationships between
material parameters and ballistic limit.




V. RECOMMENDATIONS

In view of the results of this research program, the following
recommendations are made as to the direction of future efforts. The
behavior of felt materials during their response to ballistic impact has
been quantitatively defined by experiment. Before the required com-
prehensive relationships between material parameters and ballistic
limit velocities can be determined, observed qualitative behavior will
have to be incorporated more carefully into analytical models by means
of comprehensive analytical investigations. Although initially complex,
it is expected that these models will become more simple in form as
physical understénding improves. The experimental data generated
during this program should form an ample basis for model development
involving iterative analytical derivation, evaluation, and modification.
The complexity of general theoretical relationships and the state-of-the-
art related to the phenomena of transverse ballistic impact and plastic
wave propagation are such that the many possible simplifying assump-
tions must be examined in order to obtain valid and useful solutions in
closed form. The experimental data provides insight as to possible
simplifications and the required means for examining and validating
assumptions. It provides a source of extensive information for the
final evaluations of theoretical results.
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PROJECTILE AND MATERIAL PROPERTIES

TABLE A-I

Fragment Simulating Projectile (T-37)

Overall
Weight Mass Diameter Length
- grains - slugs - inches - inches  Material Hardness
17.0% .5 7.55%107° 0.215 0.250  Steel R.29-31
SAE-1020
Felt Materials
Mass

Areal Nominal Density Staple Fiber

Density Thickness - slugs/ Length Denier
Material - oz/ycl2 - inches ft? - inches (a)
Polypropylene 40 0.45 0. 230 2.5 3
Type 54 Dacron 42 0.40 0.272 4.5 4.5
Type 42 Orlon 43 0.50 0.223 4.5 4.5
Type 100 Nylon 43 0. 40 0.279 4.5 15
Type 100 Nylon 53 0.50 0.263 4.5 15
C-500-58 Nylon 19 0.11 0.448 3 6

(a) Denier is the weight in grams of 9000 meters of the fiber.
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DISPLACEMENT-TIME DATA

All of the valid displacement-time data that was obtained during
the experimental program are presented in Table B-I. These data con-
cern the position of various points on the rear surface of the felt mate-
rial at successive instances in time during the impact event. The
spark-gap technique that is described in section II. A. was used to obtain
these data. The high degree of precision of these data is discussed in
section II. C. The displacement-time data included herein provide a
valid and extensive source of information with which to compare the
results of analytic investigations.

As stated, only valid data are reported. Many of the tests pro-
duced questionable or invalid data due to several factors; among these
were: electrical equipment malfunction or inaccurate timing, projec-
tile tumble during the deceleration, complete perforation, spark-gaps
opening up during test, and excessive discrepancy between the line of
fire and the center arc-gap station. All of the felt materials are, to
some degree, anisotropic due to the uni-directional combing of the
fibers prior to needling. However, each felt was composed of several
layers of combed matting needled together. Successive layers were
overlayed with perpendicular combing directions, thus eliminating -
anisotropy to a great extent. An apparent ''grain'' is left on the felt
materials due to the direction of the last needling process. Several
tests were conducted in which the line of the spark-gap stations was
varied with respect to the direction of this grain. No differences in
results were noted. For consistency, all tests were conducted with the
line of the spark-gaps being parallel to the direction of last needling.

In Table B-I, the displacement-time data are reported by indi-
vidual tests. The test number, felt material, areal density, and
impact velocity of the 17-grain fragment simulating projectile are
shown. The displacement-time data are reporfed in terms of the r and
z coordinants of each spark-gap station at various times after initial
impact. Figure B-1l illustrates the coordinate system used.

The spark-gap stations are located on the rear surface of the
felt material. Eleven stations were used and are referred to as shown
on Figure B-1. The z axis is perpendicular to the plane of the felt and
passes through the center station (Station 0). The r axis lies on the
rear surface of the felt and contains each of the eleven stations. The
stations are numbered positive to the right, negative to the left. The r
and z coordinants of each station are given at time zero (initial impact)
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Figure B-1. Coordinate System Used to Define
Displacement-Time Data

and at 86-microsecond intervals thereafter. At time zero, no motion
has yet occurred and the corresponding coordinants refer to the original
position of each station. Displacements in the positive z direction refer
to displacements in the direction of impact. Xxcept for Station 0, all
radial displacements are positive since they refer to the radial distance
from the original position of Station 0 (the z axis). During motion,
Station 0 will not, necessarily, follow the z axis exactly. Positive r
values for this station refer to radial displacements toward the right or
positively numbered stations; negative values refer to displacements to
the left. All positions are reported in terms of inches. The value of
Ar, reported for each test, refers to the amount of deviation between
the axis of the projectile and the z axis. It is important to note that the
impact will be symmetrical about the axis of the projectile, and not

about the z axis.
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